精品剧情v国产在免费线观看_99精品视频在线观看re_国产成人啪精品午夜在线播放_国产精品免费无遮挡无码永久视频

服務(wù)熱線

13810233784
網(wǎng)站導(dǎo)航
技術(shù)文章
當(dāng)前位置:主頁 > 技術(shù)文章 > 周期性極化KTP利用自發(fā)參量下轉(zhuǎn)換產(chǎn)生糾纏光子對(duì)綜述

周期性極化KTP利用自發(fā)參量下轉(zhuǎn)換產(chǎn)生糾纏光子對(duì)綜述

更新更新時(shí)間:2023-11-30 點(diǎn)擊次數(shù):2009

周期性KTP利用自發(fā)參量下轉(zhuǎn)換產(chǎn)生糾纏光子對(duì)綜述

  糾纏光子對(duì)是量子光學(xué)實(shí)驗(yàn)的關(guān)鍵資源,而利用在非線性晶體中的自發(fā)參量下轉(zhuǎn)換(SPDC)是產(chǎn)生糾纏光子對(duì)的一個(gè)廣泛采用的方法。目前自發(fā)參量下轉(zhuǎn)換光子糾纏對(duì)發(fā)生器的已經(jīng)做到高亮度,高抗干擾,高緊湊度。

非中心對(duì)稱晶體中PPKTP的自發(fā)參量下轉(zhuǎn)換(SPDC)是一個(gè)二階非線性過程,它將一個(gè)短波長(zhǎng)高能光子轉(zhuǎn)化為一對(duì)長(zhǎng)波長(zhǎng)低能光子(即參量下轉(zhuǎn)換),我們通常將這對(duì)低能量光子其一命名為信號(hào)光子(Signal)和另外一個(gè)命名為閑散光子(Idler),這對(duì)光子可以在不同的自由度上表現(xiàn)出糾纏。

1.png

圖一. PPKTP晶體

PPKTP其中的PP意思是周期性極化,具體來說是通過施加高壓電場(chǎng)使帶電磁性的晶體特定區(qū)域內(nèi)的極性產(chǎn)生的翻轉(zhuǎn),當(dāng)通過一定的工藝實(shí)現(xiàn)了穩(wěn)定性的周期翻轉(zhuǎn)后,就在晶體內(nèi)引入了非線性極化率的周期性的階躍變化,從而可以實(shí)現(xiàn)準(zhǔn)相位匹配(QPM : Quasi Phase Matching)。根據(jù)準(zhǔn)相位匹配理論,通過對(duì)晶體的非線性極化率的周期性調(diào)制來補(bǔ)償非線性頻率變換過程中因色散引起的基波和諧波之間的波矢失配,可以獲得非線性光學(xué)效應(yīng)的有效增強(qiáng)。

PPKTP擁有以下突出的優(yōu)點(diǎn):

更高的非線性轉(zhuǎn)換效率,具體到本應(yīng)用適合于產(chǎn)生高亮度量子糾纏光子對(duì)

更大的器件接收角,方便耦合泵浦源(可接駁半導(dǎo)體激光泵浦源)

幾乎消除了去離角效應(yīng),方便高效穩(wěn)定的耦合輸出

 

簡(jiǎn)而言之,對(duì)于量子科學(xué)利用自發(fā)參量下轉(zhuǎn)換(SPDC)產(chǎn)生糾纏光子對(duì)的需要而言,PPKTP周期性極化工藝可以給實(shí)驗(yàn)者提供一個(gè)效率高,輸入輸出耦合方便的糾纏光子對(duì)轉(zhuǎn)化器件,可能難點(diǎn)是牽涉到一系列相當(dāng)高難度的工藝流程,而這正是以色列Raicol公司的強(qiáng)項(xiàng)所在。

KTP即磷酸鈦鉀(KTiOPO4)是一種常用的非線性材料,KTP有三個(gè)非零二階張量系數(shù). 允許適當(dāng)選擇極化周期來實(shí)現(xiàn)三種形式的準(zhǔn)相位匹配,包括0型,I型和II型; 這三種構(gòu)型的光譜特性和轉(zhuǎn)化效率有很大不同。通常而言0PPKTP具備最大非線性系數(shù),而另外兩個(gè)構(gòu)型I型和II型效率稍低(且III型效率基本相同);0型和I型帶寬都較寬且表現(xiàn)出較高的溫度敏感度;而相對(duì)而言,II型架構(gòu)系統(tǒng)表現(xiàn)出較窄帶寬,低溫度敏感度。基于以上的特點(diǎn),我們發(fā)現(xiàn),I型架構(gòu)在效率,帶寬均沒有優(yōu)勢(shì);所以在以后的實(shí)際應(yīng)用環(huán)節(jié),我們就只在0型和II型架構(gòu)間進(jìn)行比較與選擇了。

 

下面具體做一個(gè)實(shí)驗(yàn)面對(duì)面比較0型和IIPPKTP晶體自發(fā)參量下轉(zhuǎn)換光子輸出有效光子對(duì)做一些討論

對(duì)于自發(fā)參量下轉(zhuǎn)換光子輸出光譜特性的檢測(cè):

 為評(píng)估溫度穩(wěn)定性,采用光譜分辨率為0.1nm的單光子光譜儀,記錄了在TEC溫控臺(tái)在20 oC50 oC范圍內(nèi)溫度調(diào)諧后,自發(fā)參量下轉(zhuǎn)換光子輸出中心波長(zhǎng)和光譜帶寬特性。

實(shí)驗(yàn)圖例證

 

圖二.PPKTP 0型與II型自發(fā)參量下轉(zhuǎn)換表現(xiàn)

 

參考圖二所示,歸納了規(guī)律如下表

曲線顏色

對(duì)應(yīng)形態(tài)

控溫溫度

輻射中心波長(zhǎng)

光譜帶寬

小結(jié)

橙色實(shí)線

0型簡(jiǎn)并

26.5 oC

810 nm

很寬

0PPKTP輸出帶寬較寬,溫度敏感。

橙色虛線

0型非簡(jiǎn)并

29 oC

807, 813nm

藍(lán)色實(shí)線

II型簡(jiǎn)并

35 oC

810 nm

IIPPKTP帶寬較窄,溫度不敏感,抗變溫干擾

藍(lán)色虛線

II型非簡(jiǎn)并

20 oC

788, 833nm

 

 









圖三. 左:變溫對(duì)SPDC輻射中心波長(zhǎng)的影響,右:變溫對(duì)SPDC輻射光譜帶寬的影響

 

參考圖三更能清晰的說明溫度調(diào)諧下,自發(fā)參量下轉(zhuǎn)換輻射光中心波長(zhǎng)和帶寬的變化趨勢(shì)。

 

自發(fā)參量下轉(zhuǎn)換輻射光譜帶寬主要取決于PPKTP晶體的長(zhǎng)度和信號(hào)光與閑散光的群速度失配。一般而言,簡(jiǎn)并度越高(即輸出光子對(duì)的中心波長(zhǎng)越接近),自發(fā)參量下轉(zhuǎn)換光譜越寬。這個(gè)特點(diǎn)在0PPKTP晶體上尤其明顯,0PPKTP晶體在簡(jiǎn)并輸出時(shí)光譜帶寬最寬。應(yīng)當(dāng)講0型簡(jiǎn)并輸出的寬光譜過寬帶寬對(duì)于諸如量子密碼一類的應(yīng)用有一定不利,但寬光譜的特點(diǎn)在實(shí)現(xiàn)超短的時(shí)間相關(guān)性上還是有利的。

對(duì)于IIPPKTP的自發(fā)參量下轉(zhuǎn)換輻射過程,信號(hào)光和閑散光的偏振輸出是正交的,其群速度在波長(zhǎng)簡(jiǎn)并度上已經(jīng)有明顯的差異,導(dǎo)致了相對(duì)較小的光譜帶寬,如果某應(yīng)用需要相對(duì)窄的輸出光譜帶寬則可以考慮。

 

 

 

對(duì)于PPKTP自發(fā)參量下轉(zhuǎn)換光子輸出有效光子對(duì)產(chǎn)生效率的討論:

4.png 

圖四。更小的光腰意味著更大的發(fā)散角

 

一般而言,進(jìn)入PPKTP晶體的泵浦激光如果把光腰聚焦得更小的話,會(huì)提升在PPKTP晶體內(nèi)產(chǎn)生光子對(duì)的幾率(更高的泵浦功率密度意味著更強(qiáng)的非線性效應(yīng));但是更小的光腰往往意味著相對(duì)更低的宣布效率heralding efficiency(所謂宣布效率指的是產(chǎn)生的光子對(duì)最終能被系統(tǒng)探測(cè)器真正檢測(cè)到的幾率;我們認(rèn)為大致的原因來源于為了獲得更小的光腰一般導(dǎo)致更大發(fā)散角,而大的發(fā)散角意味著后續(xù)收集光路不好設(shè)計(jì)與建造,進(jìn)而導(dǎo)致收集效率降低,最后導(dǎo)致宣布效率即總探測(cè)效率降低)。

所以說,實(shí)驗(yàn)者會(huì)在一個(gè)權(quán)衡后選擇相對(duì)較好的光腰大小。我們?cè)趯?shí)驗(yàn)中選擇了泵浦激光光腰聚焦至150um,耦合光纖芯徑取80um,相對(duì)比較吻合本文20mm長(zhǎng)度的PPKTP晶體。

 

5.png 

圖五. 同樣泵浦源激發(fā)下,調(diào)變溫度時(shí)0型(藍(lán)色)和II型(橙色)PPKTP輻射的光子對(duì)亮度和光譜亮度

注:觀察圖五往往會(huì)犯一個(gè)重大錯(cuò)誤是:忽略了不同顏色坐標(biāo)軸的量綱。

 

請(qǐng)注意左邊藍(lán)色縱軸標(biāo)注的0PPKTP光子對(duì)輻射量綱是x106(即百萬光子對(duì)),右邊橙色縱軸標(biāo)注的IIPPKTP光子對(duì)輻射量綱是x104(即萬光子對(duì)),藍(lán)色和黃色數(shù)據(jù)交叉重疊的部分不是數(shù)值相同,而是仍然相差100倍!之所以把這兩個(gè)不同光強(qiáng)量綱的圖片合二為一的原因僅僅是為了讀者更快的理解調(diào)節(jié)溫度下兩型晶體的表現(xiàn)趨勢(shì)。

從曲線觀察,IIPPKTP晶體(兩條橙色曲線)的光子對(duì)輻射亮度(光子對(duì)/每毫瓦泵浦功率)和光子對(duì)光譜輻射度(光子對(duì)/每毫瓦泵浦功率/nm)與晶體溫度調(diào)節(jié)相關(guān)性不高,而0PPKTP晶體(兩條藍(lán)色曲線)在簡(jiǎn)并輸出中心波長(zhǎng)810nm(約26.5 oC時(shí))光子對(duì)亮度最高;但是由于此時(shí)輻射光譜帶寬很寬(參見圖二);其光子對(duì)光譜亮度(光子對(duì)/每毫瓦泵浦功率/nm)比較低,隨著溫度調(diào)變(伴隨著非簡(jiǎn)并度提升,即輸出光子對(duì)信號(hào)光和閑散光中心波長(zhǎng)差異加大),雖然光子對(duì)總亮度稍有減小,但是光譜亮度明顯提升,并在大約28 oC左右大致達(dá)成較為恒定的光子對(duì)光譜亮度。

2. 0型晶體非簡(jiǎn)并輸出與II型晶體簡(jiǎn)并輸出光子對(duì)亮度比較

晶體型態(tài)

信號(hào)光

閑散光

光譜帶寬

光子對(duì)亮度

光子對(duì)光譜亮度

0

784nm

839mn

2.3nm

1 Mcps/mW

0.46 Mcps/mW/nm

II

810nm

810nm

0.3nm

0.008 Mcps/mW

0.026 Mcps/mW/nm

 

經(jīng)過實(shí)驗(yàn)我們獲得0PPKTP觀測(cè)到的光譜亮度(光子對(duì)/每毫瓦泵浦功率/nm)大致是IIPPKTP觀測(cè)光譜亮度的20倍。這個(gè)實(shí)驗(yàn)結(jié)果與0型和II型非線性系數(shù)的差異是吻合的。

另外,由于0PPKTP的輻射光子光譜寬度較寬,最后導(dǎo)致其輻射光子亮度大致比IIPPKTP高兩個(gè)數(shù)量級(jí)。

 

所以,總體而言;如圖所示,由于0PPKTP晶體的非線性系數(shù)遠(yuǎn)高于II型晶體,在輸出光子對(duì)亮度(光子對(duì)/每毫瓦泵浦功率)和光譜亮度(光子對(duì)/每毫瓦泵浦功率/nm)上均大幅度碾壓II型晶體。但并不是II型晶體在此一無是處,我們觀察到II型晶體雖然轉(zhuǎn)化效率較低,但是其溫度敏感度也很低,也就是說即使工作溫度有很大差別,IIPPKTP晶體自發(fā)參量下轉(zhuǎn)換輻射光子對(duì)的亮度和光譜亮度幾乎恒定, 這個(gè)特點(diǎn)使得II型晶體在嚴(yán)酷條件(比如說星載量子系統(tǒng),在外太空產(chǎn)生糾纏光子對(duì))時(shí),可以大幅度減小控溫設(shè)備體積重量甚至不做額外控溫狀態(tài)下,以所謂的自由運(yùn)行條件,在外界溫度變化時(shí)仍能穩(wěn)定有效的輻射糾纏光子對(duì)。這就是所謂魯棒性高(High Robustness),我們傾向于翻譯為抗環(huán)境干擾能力高。

 

 

 

多模連續(xù)泵浦SPDC自發(fā)參量下轉(zhuǎn)換:

對(duì)于常規(guī)的多模連續(xù)波激光(帶寬大致1nm左右)泵浦SPDC自發(fā)參量下轉(zhuǎn)換一直以來并不被關(guān)心,是因?yàn)閱慰v模激光(大致帶寬500MHz或以下)的連續(xù)被激光器對(duì)于量子實(shí)驗(yàn)室而言已經(jīng)是一種常規(guī)采購(gòu)的普通激光器了。如上一段所提及,對(duì)于長(zhǎng)距離傳輸,惡劣環(huán)境(比如外太空環(huán)境)應(yīng)用,還是有可能需要系統(tǒng)更為緊湊,抗環(huán)境干擾能力更高的多模激光器的,所以我們還是評(píng)估了一下多模連續(xù)被泵浦SPDC自發(fā)參量下轉(zhuǎn)換的光譜特性和轉(zhuǎn)化效率。

 

圖六.0型和IIPPKTP利用多模(寬帶寬)激光泵浦時(shí)下的各自表現(xiàn)

如圖所示,橙色曲線為利用405nm單模(窄線寬)激光泵浦的光子對(duì)輻射光譜曲線,綠色為利用405nm多模(寬線寬)激光泵浦后的光子對(duì)輻射光譜曲線,很明顯,0PPKTP采用多模激光激發(fā)后光子輻射譜過寬,為了勉強(qiáng)可用還需要額外附加帶通濾光片做濾波;而IIPPKTP在采用多模激光激發(fā)后線寬漂移和展寬都不大,一般可以直接應(yīng)用,也就是說II型更能適合多模激光泵浦源。

Sagnac干涉儀架構(gòu)下的偏振型光子糾纏對(duì)產(chǎn)生:

7.png

 

圖七. 0型和IIPPKTP晶體自發(fā)參量下轉(zhuǎn)換驗(yàn)證實(shí)驗(yàn)

 

如圖所示,我們采用一臺(tái)405nm連續(xù)被二極管激光器做泵浦源,0型和IIPPKTP裝卡在同一溫控臺(tái)上(這樣就可以利用下面的電移臺(tái)切換待測(cè)晶體),PPKTP晶體參見Raicol 規(guī)格,長(zhǎng)度20mm,寬高2*1mm,外光路是Sagnac干涉儀架構(gòu);輸出的光子對(duì)采用二向色鏡分離非簡(jiǎn)并光(非簡(jiǎn)并即輸出光子對(duì)波長(zhǎng)不同);或利用偏振分束器分離偏振光,然后用兩根單模光纖耦合進(jìn)兩個(gè)雪崩二極管做符合探測(cè),來驗(yàn)證光子對(duì)。經(jīng)測(cè)試0型和II型都能取得很高的偏振保真度。

總結(jié)和引申討論:

本文總結(jié)了0型和IIPPKTP晶體各自的特點(diǎn),相對(duì)而言,0PPKTP晶體由于其高非線性效率和高偏振保真度,適合于大多數(shù)需要產(chǎn)生大量糾纏光子對(duì)的應(yīng)用,而IIPPKTP晶體高偏振保真度,窄輸出線寬,對(duì)泵浦波長(zhǎng)變化和溫度擾動(dòng)不敏感,適合于一些希望獲得更強(qiáng)抗干擾能力,更窄輸出線寬的應(yīng)用。下面,我們就一些典型應(yīng)用做具體分析:

光壓縮Squeezed Light

由于海森堡測(cè)不準(zhǔn)原理(也稱海森堡不確定關(guān)系)限制,量子化電磁場(chǎng)的正交振幅分量X與正交位相分量P均存在量子漲落,因此不能被同時(shí)準(zhǔn)確測(cè)量。換而言之,如果我們采用某種方式讓一個(gè)分量的量子漲落低了(也就是噪音低了),另外一個(gè)分量的量子漲落一定升高。我們其實(shí)就是利用這個(gè)特點(diǎn),人為的壓縮一個(gè)分量的量子漲落,而放任另外一個(gè)分量漲落提升,后續(xù)的測(cè)量系統(tǒng)只檢測(cè)被壓縮漲落的這個(gè)分量,以此方式在這個(gè)分量上大幅度降低噪聲,從而提升信噪比。這就是所謂Squeezed Light壓縮光的由來,簡(jiǎn)而言之,壓縮光不是真正把光壓縮了,而是壓縮了光波一個(gè)分量上的量子漲落(即壓縮了這個(gè)分量上的噪聲),從而大幅度提升這個(gè)分量上的檢測(cè)信噪比。接下來您可能問了,那么其他分量也要測(cè)呢?簡(jiǎn)單呀,取其他分量方向,另外再壓縮,再測(cè)試呀;PPKTP可以用于光壓縮,多個(gè)不同分量的并聯(lián)光壓縮可以利用多個(gè)光學(xué)通道用多個(gè)PPKTP分別壓縮。

8.png

 

圖八.較早的光壓縮系統(tǒng)架構(gòu)

 

簡(jiǎn)單講,光壓縮是為了提升探測(cè)系統(tǒng)的信噪比,這里常規(guī)而言,采用0PPKTP晶體由于其很好的光子對(duì)轉(zhuǎn)化效率,首先提供了很高的信號(hào)水平;再進(jìn)一步的在一個(gè)分量上進(jìn)行壓縮,則獲得了這個(gè)分量更高的信噪比。

玻色子采樣和量子干涉Boson Sampling and quantum interference

其實(shí)這個(gè)應(yīng)用仍然是要利用壓縮光,只不過要求更為嚴(yán)格或特殊。舉個(gè)量子干涉的例子,比如我們知道的引力波探測(cè)系統(tǒng)LIGO,是由兩個(gè)長(zhǎng)達(dá)數(shù)公里相互垂直的探測(cè)臂組成,相當(dāng)于架設(shè)一臺(tái)以公里計(jì)的超大型干涉儀來進(jìn)行超微弱信號(hào)檢測(cè),據(jù)報(bào)道,引入了壓縮光之后,使得引力波量子干涉檢測(cè)的信噪比提升了數(shù)倍。象這樣一類特殊應(yīng)用對(duì)于糾纏光子對(duì)輸出線寬希望更窄,對(duì)于抗環(huán)境擾動(dòng)的能力希望更強(qiáng),所以會(huì)犧牲一定的轉(zhuǎn)化效率,而選用IIPPKTP晶體。

9.png

 

圖九.引力波探測(cè)系統(tǒng)LIGO

量子密鑰分發(fā)Quantum Key Distribution

量子密鑰的載體就是糾纏光子對(duì),常規(guī)的大氣環(huán)境或采用光纖通道進(jìn)行量子密鑰分發(fā),由于大氣有強(qiáng)烈的衰減以及光纖的去相干效應(yīng),很難實(shí)現(xiàn)長(zhǎng)距離量子密鑰傳輸。此時(shí)往往會(huì)采用0PPKTP,盡可能的多產(chǎn)生一些糾纏光子對(duì)(即提升信號(hào)水平還準(zhǔn)備承受后續(xù)的衰減和去相干效應(yīng)的損耗)。

但也有一些特殊情況,比如果星載量子密鑰分發(fā),舉個(gè)例子:

中科大潘建偉院士小組在《自然》雜志發(fā)表的《“墨子號(hào)"量子科學(xué)實(shí)驗(yàn)衛(wèi)星,實(shí)現(xiàn)1120公里長(zhǎng)距離無中繼糾纏量子密鑰分發(fā)》,在這次實(shí)驗(yàn)中,中科大在相隔1120公里的新疆烏魯木齊南山站和青海德令哈站設(shè)置了兩個(gè)地面站。每個(gè)站點(diǎn)都有專門為量子實(shí)驗(yàn)設(shè)計(jì)的直徑為1.2米的地面望遠(yuǎn)鏡做光子接收。以及《“墨子號(hào)"實(shí)現(xiàn)了北京和維也納之間的7600公里洲際量子通信》,進(jìn)一步延長(zhǎng)了量子密鑰星地分發(fā)的距離。其設(shè)計(jì)理念是:

讓衛(wèi)星作為糾纏源,只負(fù)責(zé)分發(fā)糾纏,不掌握任何密鑰信息,即使糾纏源來自不可信的第三方,只要用戶間能檢測(cè)到量子糾纏,仍可以產(chǎn)生安全的密鑰。

星載量子密鑰分發(fā)另外一個(gè)重大優(yōu)點(diǎn)是:如果是星對(duì)地量子密鑰分發(fā),主要需要克服大氣層的損耗和去相干作用,在外太空傳輸段是沒有附加損耗的,所以說,星地密鑰分發(fā)在克服了百公里厚度的大氣層干擾效應(yīng)后,增加上千公里的太空內(nèi)無干擾傳輸距離是手到擒來的。更進(jìn)一步的說,如果是星際間量子通信,則甚至由于太空內(nèi)真空傳輸甚少損耗,實(shí)現(xiàn)以光年距離計(jì)算的量子密鑰分發(fā)也是也有可能的。如本文討論,相對(duì)而言,IIPPKTP晶體的自發(fā)參量下轉(zhuǎn)換更為適合條件嚴(yán)苛的星載糾纏光子對(duì)生成與分發(fā),比如說可以做到擺脫更占體積與重量的控溫與壓縮線寬的周邊設(shè)備,而利用體積更小,功率更高且能耗比更高的多模半導(dǎo)體激光器作為自由運(yùn)行泵浦源,采用IIPPKTP承受更高的外界溫度環(huán)境擾動(dòng),穩(wěn)定的產(chǎn)生自發(fā)參量下轉(zhuǎn)換光子對(duì)。

量子“鬼"成像Imaging With Undetected Photons

   “鬼"成像較早是顯示量子糾纏奇妙應(yīng)用的一個(gè)很具吸引力的方向,真正實(shí)現(xiàn)成像的光路根本就不經(jīng)過目標(biāo)本身,所以稱之為“鬼成像",但在其后的數(shù)年內(nèi),業(yè)內(nèi)科學(xué)家發(fā)現(xiàn)了即使不采用糾纏光子對(duì),也能實(shí)現(xiàn)“鬼成像",所以量子“鬼"成像因其光子糾纏對(duì)的產(chǎn)率畢竟是會(huì)遠(yuǎn)遠(yuǎn)低于常規(guī)光源,在做“鬼成像"應(yīng)用看似無甚優(yōu)點(diǎn),近些年來文章數(shù)目明顯減小。但最近還是有幾篇比較有趣的文章,筆者后續(xù)會(huì)另外再寫一個(gè)小綜述做相對(duì)詳細(xì)的敘述,本文簡(jiǎn)單歸納一下最近幾篇量子鬼成像在實(shí)用性上的優(yōu)點(diǎn)所在:

可以利用0PPKTP大波長(zhǎng)差產(chǎn)生非簡(jiǎn)并糾纏光子對(duì)的特點(diǎn),用一束可見光激光泵浦產(chǎn)生700-800nm附近的近紅外信號(hào)光,同時(shí)產(chǎn)生一個(gè)3-4um中紅外閑散光。3-4um中紅外閑散光對(duì)于生物成像非常有好處,比如3-4um正好是生物組織指紋光譜的波段,有望實(shí)現(xiàn)選擇性檢測(cè),而且波長(zhǎng)越長(zhǎng)深入生物組織的能力就越強(qiáng);而700-800nm的信號(hào)光也有好處,我們常規(guī)的硅基面陣成像器在700-800nm附近的感應(yīng)靈敏度保持的相當(dāng)高,比較起中紅外面陣成像器而言,在探測(cè)靈敏度,信噪比,空間分辨率,系統(tǒng)價(jià)格便宜等各方面全面碾壓。

PPKTP產(chǎn)生量子糾纏對(duì)強(qiáng)度遠(yuǎn)弱于常規(guī)光源有時(shí)候反而是一個(gè)優(yōu)點(diǎn)所在,因?yàn)閷?duì)于生物組織成像,細(xì)胞在承受強(qiáng)烈照射后會(huì)失去生物活性,而糾纏光子的照射無論如何不可能超過生物組織的損傷閾值。

進(jìn)一步的研究方向,如果找到了可以涵蓋從近紅外到超遠(yuǎn)紅外(比如太赫茲波段)的自發(fā)參量下轉(zhuǎn)換非線性晶體,我們就可以做到利用硅基CCDCOMS相機(jī)探測(cè)信號(hào)波段,又便宜有高效的實(shí)現(xiàn)閑散光波段太赫茲相干成像,從而客服太赫茲波段成像難的問題。


參考文獻(xiàn):

[1] Steinlechner et al. “Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4", JOSA B 31, 9, 2068-2076 (2014).

[2] Graffitti et al. “Independent high-purity photons created in domain-engineered crystals", Optica 5, 5, 514-517 (2018).

[3] Zhong et al. “Quantum computational advantage using photons", Science 370, 6523, 1460-1463 (2020).

[4] Madsen et al. “Quantum computational advantage with a programmable photonic processor", Nature 606, 75–81 (2022).

[5] Taballione et al. “20-Mode Universal Quantum Photonic Processor", arXiv:2203.01801.

[6] Yin et al. “Entanglement-based secure quantum cryptography over 1,120 kilometres", Nature 582, 501–505 (2020).

[7] Mishra et al. “BBM92 quantum key distribution over a free space dusty channel of 200 meters", Journal of Optics, 24, 7 (2022).

[8] Brambila et al. “Ultrabright Polarization-Entangled Photon Pair Source for Frequency-Multiplexed Quantum Communication in Free-Space", arXiv:2205.10214.

[9] Takeno et al. “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement", Optics Express 15, 7, 4321-4327 (2007).

[10] Vahlbruch et al. “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency", Physical Review Letters 117, 110801 (2016).

[11] Sch?nbeck et al. “13?dB squeezed vacuum states at 1550?nm from 12?mW external pump power at 775?nm", Optics Letters 43, 1, 110-113 (2018).

[12] Casacio et al. “Quantum-enhanced nonlinear microscopy", Nature 594, 201–206 (2021).

[13] Ast et al. “High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity", Optics Express 21, 11, 13572-13579 (2013).

[14] Gilaberte Basset et al. “Video-Rate Imaging with Undetected Photons", Laser & Photonics Reviews 15, 6 (2021).

[15] Kviatkovsky et al. “Microscopy with undetected photons in the mid-infrared", Science Advances 6, 42 (2020).

 




2025 版權(quán)所有 © 先鋒科技(香港)股份有限公司  備案號(hào): sitemap.xml 管理登陸 技術(shù)支持:化工儀器網(wǎng)

地址:香港灣仔駱克道301-307號(hào)洛克中心19樓C室 傳真: 郵件:lina-he@zolix.com.cn

關(guān)注我們

服務(wù)熱線

13810233784

掃一掃,聯(lián)系我們

精品剧情v国产在免费线观看_99精品视频在线观看re_国产成人啪精品午夜在线播放_国产精品免费无遮挡无码永久视频

<label id="60sft"></label>
    <span id="60sft"><nav id="60sft"></nav></span>
      <span id="60sft"></span>
    1. <label id="60sft"><meter id="60sft"></meter></label>

      久久亚洲综合av| 亚洲va中文字幕| 欧美三级午夜理伦三级中视频| 丝袜国产日韩另类美女| 精品国产乱码久久久久久影片| 懂色av中文一区二区三区| 亚洲久草在线视频| 欧美一级免费观看| 国产成人午夜电影网| 夜夜精品视频一区二区| 日韩一级片网址| heyzo一本久久综合| 亚洲福利视频三区| 久久伊人中文字幕| 在线日韩国产精品| 九九九精品视频| 亚洲欧美日韩中文字幕一区二区三区| 91精品久久久久久久99蜜桃| 成人综合激情网| 亚洲成在人线免费| 国产无一区二区| 欧美日韩性生活| 丰满白嫩尤物一区二区| 首页综合国产亚洲丝袜| 久久视频一区二区| 欧美系列亚洲系列| 国产精品一区免费视频| 亚洲国产欧美另类丝袜| 日本一区二区三区dvd视频在线| 欧美亚洲国产bt| 国产一区中文字幕| 亚洲成人av免费| 中文字幕国产一区| 欧美一区午夜视频在线观看| 99国内精品久久| 国内外精品视频| 亚洲午夜免费电影| 欧美国产禁国产网站cc| 日韩一本二本av| 日本高清不卡视频| 国产69精品久久777的优势| 亚洲不卡一区二区三区| 国产精品久久久久久一区二区三区| 91精品久久久久久久久99蜜臂| av亚洲精华国产精华精华| 精品亚洲porn| 日韩影院精彩在线| 一区二区三区国产豹纹内裤在线| 久久精品综合网| 91精品国产日韩91久久久久久| 91国在线观看| av电影一区二区| 国产乱码精品一区二区三区五月婷 | 欧美精品在欧美一区二区少妇| av网站免费线看精品| 国产一区二区h| 日本美女视频一区二区| 亚洲国产中文字幕在线视频综合 | 国产乱国产乱300精品| 日韩电影一区二区三区| 亚洲综合色自拍一区| 国产精品国产三级国产有无不卡| 精品国一区二区三区| 91麻豆精品国产91久久久久| 欧美在线免费观看视频| 色综合久久综合网| av亚洲精华国产精华| 福利一区福利二区| 国产一区二区三区在线观看精品| 日韩高清在线电影| 亚洲国产精品一区二区久久恐怖片| 亚洲欧洲成人精品av97| 日本一区二区三区国色天香| 久久久久久久网| 精品国产不卡一区二区三区| 91精品国产品国语在线不卡| 欧美日韩视频在线一区二区| 欧美午夜视频网站| 在线观看成人免费视频| 色香蕉成人二区免费| 91麻豆产精品久久久久久| 97久久精品人人做人人爽| 成人黄色电影在线| 成人激情av网| 99久久免费视频.com| 成人动漫一区二区| eeuss鲁一区二区三区| 风间由美性色一区二区三区| 粉嫩av一区二区三区| 成人国产在线观看| 成人国产精品免费观看视频| 成av人片一区二区| 91在线视频观看| 色综合久久中文字幕| 91久久香蕉国产日韩欧美9色| 在线观看亚洲精品| 欧美日韩国产一区二区三区地区| 欧美日韩国产精品自在自线| 欧美老年两性高潮| 91精品国产入口在线| 日韩美女视频在线| 久久婷婷综合激情| 欧美国产日产图区| 中文字幕一区三区| 亚洲视频资源在线| 亚洲一区二区三区在线| 亚洲a一区二区| 免费人成精品欧美精品| 久久99国产乱子伦精品免费| 国产寡妇亲子伦一区二区| 国产99精品国产| 91啪亚洲精品| 欧美日产在线观看| 日韩精品资源二区在线| 久久久久久麻豆| 国产精品传媒在线| 亚洲一区二区成人在线观看| 日本不卡视频一二三区| 黄页网站大全一区二区| 成人在线综合网| 色屁屁一区二区| 555www色欧美视频| 久久理论电影网| 最新成人av在线| 性欧美大战久久久久久久久| 蜜臀av性久久久久av蜜臀妖精 | 国产一区二区网址| 99精品视频在线播放观看| 欧美无乱码久久久免费午夜一区| 日韩一本二本av| 国产精品久久夜| 午夜国产精品影院在线观看| 久久99精品久久久久久| 成年人网站91| 在线成人免费观看| 欧美国产日产图区| 亚洲成国产人片在线观看| 国产自产高清不卡| 91在线精品一区二区三区| 欧美猛男超大videosgay| 精品国产乱码久久久久久久| 日韩一区欧美一区| 免费日本视频一区| 99精品视频在线免费观看| 337p亚洲精品色噜噜狠狠| 国产欧美一区二区在线观看| 亚洲一区二区av在线| 国产一区二区久久| 欧美亚洲丝袜传媒另类| 久久久欧美精品sm网站| 亚洲精品乱码久久久久| 韩国毛片一区二区三区| 色综合咪咪久久| 久久中文娱乐网| 亚洲一区二区视频在线观看| 国产精品小仙女| 欧美日韩视频一区二区| 国产精品午夜久久| 美女一区二区三区| 99免费精品在线| 精品三级在线观看| 亚洲一区欧美一区| 国产不卡视频在线观看| 欧美精品vⅰdeose4hd| 国产精品丝袜在线| 麻豆国产一区二区| 色88888久久久久久影院野外| 欧美精品一区二区不卡| 亚洲一二三区在线观看| 风流少妇一区二区| 日韩你懂的在线观看| 曰韩精品一区二区| 国产成人精品一区二区三区四区| 欧美精品少妇一区二区三区| 综合av第一页| 国产福利一区二区三区在线视频| 欧美精三区欧美精三区 | 一区二区在线看| 高潮精品一区videoshd| 日韩欧美一区在线观看| 亚洲精选一二三| 成人污视频在线观看| 欧美一级日韩免费不卡| 亚洲五码中文字幕| 97久久精品人人澡人人爽| 久久久精品人体av艺术| 日韩av一区二区在线影视| 在线观看一区不卡| 《视频一区视频二区| 国产精品一区二区男女羞羞无遮挡 | 国产精品女上位| 国内精品伊人久久久久av一坑| 欧美福利视频导航| 亚洲一区二区精品久久av| 99久久99久久免费精品蜜臀| 久久人人97超碰com| 久久www免费人成看片高清| 欧美乱妇一区二区三区不卡视频| 亚洲欧美日韩小说| 99久久婷婷国产综合精品电影|